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Bosonic String in the Hot Sehwarzschild Geometry 

M a i n u d d i n  A h m e d  1 

Received May 14, 1993 

We study the bosonic string in the Schwarzschild-de Sitter black hole, which 
has a black hole horizon as well as a cosmological horizon. This generalizes the 
bosonic string in the cold Schwarzschild black hole already studied. 

1. INTRODUCTION 

In recent years there has been interest in studying strings in the context 
of quantum gravity. A first step in this regard was the investigation of 
string quantization in the Rindler spacetime and the Hawking-Unruh 
effect in string theory (de Vega and Sanchez, 1987; Sanchez, 1987). Sanchez 
and de Vega (1987) developed a general method of string quantization in 
curved spacetime taking into account the strong curvature effect of the 
geometry. They treat the spacetime metric exactly and the string excitations 
small as compared with the energy scale of the geometry. They applied 
their method to the de Sitter and Schwarzschild black hole geometries (de 
Vega and Sanchez, 1988a). We would like to apply their method to the 
Schwarzschild-de Sitter black hole (Gibbons and Hawking, 1977). We call 
the Schwarzschild-de Sitter black hole a hot Schwarzschild black hole, 
since the de Sitter spacetime has been interpreted as being hot (Gasperini, 
1988). 

2. BOSONIC STRING IN THE HOT SCHWARZSCHILD 
GEOMETRY 

The hot Schwarzschild line element is given by 

ds  2 = - X  d X  ~ + Z -1 d R  2 + R 2 d ~  2 (i) 
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where 

d ~  2 = dO 2 + sin20 d(~ 2 

Y, = 1 - 2 M / R  - R2/a 2, a = (3/A) 1/2 

The parameters M and A represent the mass of the source and the 
cosmological constant, respectively. If A < (9M 2) -1, E = 0 gives two posi- 
tive values. The smaller value gives the black hole horizon while the larger 
one is similar to the cosmological horizon in the de Sitter space. 

The D-dimensional generalization of the hot Schwarzschild metric is 
given by 

dR 2 
ds2= - [ 1  - ( 1  - E ) ~ 1 7 6  l - ( 1  - Z )  D - 3 + R 2 d f ~ 2 - 2  (2) 

where R is the radial coordinate and df~ 2 is the line element of  the 
D-dimensional unit sphere. 

The string equations of motion in the hot Schwarzschild metric are 
given by 

c32X o + I f  (1 - -  • ) D - - 2  ~ / t X  0 O~,R = 0 
fl(a) 

K 
d 2R - ~ ( 1 - Z) D - 2(~ u R) 2 _ fl[R(d# ~") 2 _ K( 1 - Z) D - 2(t~ X o) 21 = 0 

(3) 

where 

(f~i)2 = 1, 1 < < , i < D - 2  

fl(R) = 1 - (1 - E) ~  (4) 

D - 3  
K 

2R(1 - Z) 

The constraint equations are 

= ~ (8 + R) 2 - fl(~ + X~ 2 + R2(~ + fl ,)2 = 0 T_+ (5) _+ 

Following the general method developed by Sanchez and de Vega (1987), 
we set 

XA(a, z) = g~(z) + t/'~(a, z) + ~A(a, z) + . . .  (6) 
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where gA is an exact solution of the equation of motion of the string. 
gA, ~/A obey the linearized perturbation around gA, and ~A satisfies the 
second-order perturbation around gA. Since gA obeys the center-of-mass 
equation of the string, we have 

1 R 2 E2 L2 
m2+~-7~ ( ~ )  - ~  +25-=0gR (7) 

where m is the mass, a '  is the tension, E is the energy, and L is the angular 
momentum of the string. Equation (7) describes the motion in the plane 
defined by the spherical coordinates 0~= re/2. That is, we have 

gl = cos qS, g2 = sin ~b, g~ = 0, a > 2, 4; = ~'L g ~  ( 8 )  

Equations (7)-(8) are solvable by 

= g R  [ E  2 __ ~ ( S ) ( m  2 q.. L2/$2)] 1/2 (9)  

We recognize here an effective potential 

L2 (10) Vefr(g) = (m2 + ~ ) I 1 -  ( R ( 1 -  E))  z~-3] 

The absorption or elastic scattering of the particle by the hot Schwarzschild 
black hole will depend on the initial energy and momentum. 

The first-order quantum fluctuations r/a(o ", z) satisfy the following 
equations: 

[-fl" , .  R2 L 2~ t2-] 

(11) 

82r1~-- 2gR "~ 2g ~ c~, 2g~,2Jifl6 = 0 gR t/ - -  (gR)4  

where the R* coordinate is defined by 

f R dR'  (12) 
R *  = R + J R (  1 - ~ ) ]  D - 3 R 'D - 3 _ [ R (  1 - Z ) ]  ~ - 

Equations (11) can be solved in the asymptotic region z ~ + o o .  At 
~ + oo, the center of mass is very far from the center of forces and the 

spacetime is practically flat. We set 

/~(~, ~) 
t/A( a, z) = gR(z) (13) 
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and expand 

D--I  
0~A(0 ", T) N/0~" E E 'AB (.C'~(.B o--in,r ~B eina) ( 1 4 )  = f.~_+~ J~.~ n,_+ t- "~ (Xn,__. 

n~z B~O 

where the function ~,a f~,_+ (z) satisfies the fluctuation equations (11) with the 
boundary conditions 

lira (z) = e-;n~6 A" (15) 
~ + o o  ,+ 

The choice of a positive frequency factor e - l.. in equation (15) corresponds 
to the " in" particle for z ~ - ~ or the "out"  particle state for z ~ + oo. 
Since we have free oscillators for both z ---, - ~ and z ~ ~ ,  we have 

lim ('0 aA , .  -i,,~ nA.B in~ (16) = ~.n,+e + ...n,+e 
z -* T- ~ ,++ 

where the coefficients a,B A,B An,_+ and B.,+ depend on the detailed form of 
equations (1) for all . .  From equations (14)-(16), it is evident that the 
outgoing and ingoing operator modes are related by the Bogolubov trans- 
formation. 

A a aa.B f in,+ = E  A,B (An,+ + ~n,-- n,+ 

a (17) 
~'A CA a,B ~'B A,B /L,+ =Y~,  n,+vn,-- + Bn,+ P~--n --) 

B 

We see two main effects in the transition between the string ingoing and 
outgoing modes produced by the hot Schwarzschild black hole: 

(i) Polarization changes in the modes. 
(ii) Pair mode creation. Each pair is formed by modes of opposite 

chirality. 

We find (de Vega and Sanchez, 1988b,c) for the modes orthogonal to 
the scattering plane 

B~+=6UB. ,+,  2 < i , j < D - 1  (18) 

Therefore, we find for the pair creation amplitude 

(no*~t, nou---*tl0;.> = B.,+ (19) 

where lno*-~t, h-~o~t) stands for an outgoing state with the left and the right 
nth modes occupied. For an excited initial state, we have 

~oo~t,~o~t,~o~tl~i~ =fm~B,,,  e # n  



Bosonic String in the Hot Schwarzschild Geometry 351 

Following de Vega and Sanchez (1988c), we find the coefficients An and Bn 
for large impact parameters as 

R(I~-~:) "-3ex/~ r ' (D /2+ l )  D 1 
A,, = i~' b >>R(l 

b F((D+1)12) s.) ~ ' 

f l . = P ~ ' [ R ( 1 - E ) ] ~  ( ) F  m nb 
b o - z -if, ~ (20) 

"" P~" [R( l bD~_~)]2 D - 3 ( 2nb ~Di2 exp[ - ( 2mb ~ ~T-ff ] \ o~ " P )_J 

where the function F(x,  y) is defined as a double integral (de Vega and 
Sanchez, 1988c). It should be noted that Bn is appreciably different from 
zero when the characteristic interaction time is of  the same order of 
magnitude as the vibration time of the mode. That is, 

b 2n ~ 'P  
" - -  o r  n - ( 2 1 )  

e ' P -  n b 

When n >>e'P/b, B .  is very small. At zeroth order we find for the 
center-of-mass cross section 

= t, 
[4GMF(D/2 - 1)z~ 2- D/2{1 + [(D - 3)/(D - 2)]m2/p2}](D - 2)/(D - 3) 

0-~0 (D - 3)0 ~  ' + 1/(D - 3) 

(22) 

where G is the gravitational constant and M is the mass of  the hot black 
hole. This generalizes the Rutherford formula for D = 4. Taking into 
account the first quantum correction gives 

(~-~)e las t ic=(-~-~)CM(1--n ,~mB2,)  (23) 

If  the initial stage and the final state are of the same nth modes, then we 
get an elastic cross section. The inelastic cross section is proportional to 
!B.I 2. 

3. CONCLUSION 

The results obtained in this paper correspond to the results obtained in 
the case of the Schwarzschild black hole when we set A = 0. Therefore we 
observe that the physical results remain the same whether we consider the 
string in the Schwarzschild black hole or in the Schwarzschild black hole in 
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the de Sitter spacetime, which has recently at t racted renewed interest as a 
model  o f  the inflationary stage o f  the early universe. 
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